Bell inequalities

for
(Measurement Based Quantum) Computation

Dan Browne

Dept. of Physics and Astronomy
University College London

Measurement-based

 quantum computation
Measurement-based quantum computation

- is a model of universal quantum computation.
R. Raussendorf and H.J. Briegel, "A one-way quantum computer', PRL 2000.

Measurement-based quantum computation

- is a model of universal quantum computation.
- I. Create a special multi-qubit entangled state
R. Raussendorf and H.J. Briegel, "A one-way quantum computer', PRL 2000.

Measurement-based quantum computation

- is a model of universal quantum computation.
- I. Create a special multi-qubit entangled state
- e.g. A cluster state

R. Raussendorf and H.J. Briegel, "A one-way quantum computer', PRL 2000.

Measurement-based quantum computation

- is a model of universal quantum computation.
- I. Create a special multi-qubit entangled state
- e.g. A cluster state
- 2. Then measure qubits individually, in certain (adaptive) bases, and post-process outcomes.

R. Raussendorf and H.J. Briegel, "A one-way quantum computer", PRL 2000.

Measurement-based quantum computation

- is a model of universal quantum computation.
- I. Create a special multi-qubit entangled state
- e.g. A cluster state
- 2. Then measure qubits individually, in certain (adaptive) bases, and post-process outcomes.

- Via a suitable choice of measurements, any quantum computation can be acheived.
R. Raussendorf and H.J. Briegel, "A one-way quantum computer", PRL 2000.

Measurement-based quantum computation

Requires classical "side-computation"

Measurement-based quantum computation

$$
\begin{array}{ll}
& \downarrow s_{j} \in\{0,1\} \\
\cos \theta_{j} X+\boxed{(-1)^{s_{j}}} \sin \theta_{j} Y & \boxed{ } \\
+1 \rightarrow 0-1 \rightarrow 1 & \downarrow m_{j} \in\{0,1\}
\end{array}
$$

R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).

Measurement-based quantum computation

- For a cluster state resource it suffices for side-computation to be linear.
- Each measurement is of the form

$$
\cos \theta_{j} X+(-1)^{s_{j}} \sin \theta_{j} Y
$$

and meas. outcomes are relabelled

$$
+1 \rightarrow 0 \quad-1 \rightarrow 1
$$

R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).

Measurement-based quantum computation

- For a cluster state resource it suffices for side-computation to be linear.
- Each measurement is of the form

$$
\cos \theta_{j} X+(-1)^{s_{j}} \sin \theta_{j} Y
$$

and meas. outcomes are relabelled

$$
+1 \rightarrow 0 \quad-1 \rightarrow 1
$$

- The angle θ_{j} is pre-set and differs for each measurement.
R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).

Measurement-based quantum computation

- For a cluster state resource it suffices for side-computation to be linear.
- Each measurement is of the form

$$
\cos \theta_{j} X+(-1)^{s_{j}} \sin \theta_{j} Y
$$

and meas. outcomes are relabelled

$$
+1 \rightarrow 0 \quad-1 \rightarrow 1
$$

- The angle θ_{j} is pre-set and differs for each measurement.
- But bit-value s_{j} is calculated on the fly - and set equal to the parity of a sub-set of previous measurement outcomes.
R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).

Measurement-based quantum computation

- For a cluster state resource it suffices for side-computation to be linear.
- Each measurement is of the form

$$
\cos \theta_{j} X+(-1)^{s_{j}} \sin \theta_{j} Y
$$

and meas. outcomes are relabelled

$$
+1 \rightarrow 0 \quad-1 \rightarrow 1
$$

- The angle θ_{j} is pre-set and differs for each measurement.
- But bit-value s_{j} is calculated on the fly - and set equal to the parity of a sub-set of previous measurement outcomes.
- Final output bits are encoded in the parity of a sub-set of the measurement outcomes.
R. Raussendorf, D. E. Browne and H.J. Briegel, PRA (2003).

Measurement-based quantum computation

Requires (linear / XOR) classical "side-computation"

Bell inequalities

Bell inequalities

Bell inequalities

- Bell inequalities (Bls) express restrictions on the joint probability distributions for spatially separated measurements in local hidden variable (LHV) theories.

CHSH inequality

Setting: $s_{1} \in\{0,1\}$

Outcome: $\quad m_{1} \in\{0,1\}$
$s_{2} \in\{0,1\}$

$m_{2} \in\{0,1\}$

- We focus on the parity of the outcomes and define:

$$
E_{s_{1}, s_{2}}=p\left(m_{1} \oplus m_{2}=0 \mid s_{1}, s_{2}\right)-p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right)
$$

CHSH inequality

Setting: $s_{1} \in\{0,1\}$

Outcome: $\quad m_{1} \in\{0,1\}$
$s_{2} \in\{0,1\}$

$m_{2} \in\{0,1\}$

- We focus on the parity of the outcomes and define:

$$
E_{s_{1}, s_{2}}=p\left(m_{1} \oplus m_{2}=0 \mid s_{1}, s_{2}\right)-p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right)
$$

- and show that for correlations in any LHV theory:

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2
$$

CHSH inequality

- With entangled quantum state, Alice and Bob can violate this inequality, although not exceeding Tsirelson's bound:

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2 \sqrt{2}
$$

CHSH inequality

- With entangled quantum state, Alice and Bob can violate this inequality, although not exceeding Tsirelson's bound:

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2 \sqrt{2}
$$

- A (loophole-free) demonstration of a Bell Inequality violation would refute local hidden variable theories.

CHSH inequality

- With entangled quantum state, Alice and Bob can violate this inequality, although not exceeding Tsirelson's bound:

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2 \sqrt{2}
$$

- A (loophole-free) demonstration of a Bell Inequality violation would refute local hidden variable theories.
- The maximal violation (stronger than QM) is achieved by the Popescu-Rohrlich (PR) Box, which acheives

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1}=4
$$

$$
\text { B. S.Tsirelson, Lett. Math. Phys. (} 1980 \text {). S. Popescu and D. Rohrlich, Found. Phys. (} 1994 \text {) }
$$

CHSH inequality

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2
$$

- It is useful to re-express the CHSH Inequality directly in terms of conditional probabilities.

$$
E_{s_{1}, s_{2}}=p\left(m_{1} \oplus m_{2}=0 \mid s_{1}, s_{2}\right)-p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right)
$$

CHSH inequality

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2
$$

- It is useful to re-express the CHSH Inequality directly in terms of conditional probabilities.

$$
E_{s_{1}, s_{2}}=p\left(m_{1} \oplus m_{2}=0 \mid s_{1}, s_{2}\right)-p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right)
$$

- Some simple algebra gives us a very neat representation [I] of the CHSH inequality:

$$
\frac{1}{4} \sum_{s_{1}, s_{2}} p\left(m_{1} \oplus m_{2}=s_{1} s_{2} \mid s_{1} s_{2}\right) \leq \frac{3}{4}
$$

[I] QIP Folklore: earliest reference I know:Wim Van Dam, PHD Thesis (2000)

CHSH inequality

$$
E_{0,0}+E_{0,1}+E_{1,0}-E_{1,1} \leq 2
$$

- It is useful to re-express the CHSH Inequality directly in terms of conditional probabilities.

$$
E_{s_{1}, s_{2}}=p\left(m_{1} \oplus m_{2}=0 \mid s_{1}, s_{2}\right)-p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right.
$$

- Some simple algebra gives us a very neat representation [I] of the CHSH inequality:

$$
\frac{1}{4} \sum_{s_{1}, s_{2}} p\left(m_{1} \oplus m_{2}=s_{1} s_{2} \mid s_{1} s_{2}\right) \leq \frac{3}{4}
$$

- Thus we can phrase the CHSH inequality in terms of a game. [I] QIP Folklore: earliest reference I know:Wim Van Dam, PHD Thesis (2000)

CHSH game

- Rules:
- Alice, Bob are given independent bits s_{1}, s_{2} from a uniform distribution.
- They may not communicate during the game.
- Aim:
- They should each produce a bit m_{1}, m_{2}, such that

$$
\begin{gathered}
m_{1} \oplus m_{2}=s_{1} s_{2} \\
m_{1} \mathrm{XOR} m_{2}=s_{1} \mathrm{AND} s_{2}
\end{gathered}
$$

- We call games where the desired data is encoded in the XOR of measurement outcomes XOR -games.

CHSH game

$$
\begin{array}{llr}
& \leq \frac{3}{4} & \text { LHV } \\
\frac{1}{4} \sum_{s_{1}, s_{2}} p\left(m_{1}+m_{2}=s_{1} s_{2}\right) & \leq \frac{2+\sqrt{2}}{4} \approx 0.85 & \text { Quantum } \\
& =1 & \text { PR Box }
\end{array}
$$

CHSH game

- CHSH inequalities bound the mean success probability of the game.

$$
\begin{array}{llr}
& \leq \frac{3}{4} & \text { LHV } \\
\frac{1}{4} \sum_{s_{1}, s_{2}} p\left(m_{1}+m_{2}=s_{1} s_{2}\right) & \leq \frac{2+\sqrt{2}}{4} \approx 0.85 & \text { Quantum } \\
& =1 & \text { PR Box }
\end{array}
$$

CHSH game

- CHSH inequalities bound the mean success probability of the game.

$$
\begin{array}{llr}
& \leq \frac{3}{4} & \text { LHV } \\
\frac{1}{4} \sum_{s_{1}, s_{2}} p\left(m_{1}+m_{2}=s_{1} s_{2}\right) & \leq \frac{2+\sqrt{2}}{4} \approx 0.85 & \text { Quantum } \\
& =1 & \text { PR Box }
\end{array}
$$

- The GHZ paradox can also be related to a very similar game.

GHZ correlation

$$
|\psi\rangle=|001\rangle+|110\rangle
$$

(uniquely) satisfies:

$$
\begin{aligned}
& X \otimes X \otimes X|\psi\rangle=|\psi\rangle \\
& X \otimes Y \otimes Y|\psi\rangle=|\psi\rangle \\
& Y \otimes X \otimes Y|\psi\rangle=|\psi\rangle
\end{aligned}
$$

which also imply:

$$
Y \otimes Y \otimes X|\psi\rangle=-|\psi\rangle
$$

N. D. Mermin (1990), building on Greenberger, et al. (1989)

GHZ correlation

$$
|\psi\rangle=|001\rangle+|110\rangle
$$

(uniquely) satisfies:

$$
\begin{aligned}
& X \otimes X \otimes X|\psi\rangle=|\psi\rangle \\
& X \otimes Y \otimes Y|\psi\rangle=|\psi\rangle \\
& Y \otimes X \otimes Y|\psi\rangle=|\psi\rangle
\end{aligned}
$$

which also imply:

$$
Y \otimes Y \otimes X|\psi\rangle=\Theta \psi\rangle
$$

N. D. Mermin (I990), building on Greenberger, et al. (I989)

GHZ correlation

$$
|\psi\rangle=|001\rangle+|110\rangle
$$

(uniquely) satisfies:

$$
\begin{aligned}
& X \otimes X \otimes X|\psi\rangle=|\psi\rangle \\
& X \otimes Y \otimes Y|\psi\rangle=|\psi\rangle \\
& Y \otimes X \otimes Y|\psi\rangle=|\psi\rangle
\end{aligned}
$$

which also imply:

$$
Y \otimes Y \otimes X|\psi\rangle=\Theta \psi\rangle
$$

GHZ "Paradox": No (non-contextual) real number assignment of X and Y can satisfy all of these.
N. D. Mermin (I990), building on Greenberger, et al. (I989)

GHZ"paradox"

- A very clean way to express this correlation is to use the binary notation introduced above.

$$
m_{1} \oplus m_{2} \oplus m_{3}=s_{1} s_{2}
$$

- l.e. the correlations "win" an XOR-game, nearly identical to the CHSH game.
J.Anders and D. E. Browne PRL (2009).

Geometric approach to Bell inequalities

Geometric interpretation of Bls

- Another useful representation of Bell inequalities is to form a vector from the conditional probabilities.

$$
p\left(s_{1}, s_{2}\right) \equiv p\left(m_{1} \oplus m_{2}=1 \mid s_{1}, s_{2}\right)
$$

conditional probability space

- Each possible set of conditional probabilities is represented a point in a unit hypercube.

Geometric interpretation of Bls

We can thus classify the regions of conditional probability space (2-D Schematic).
Quantum region
\qquad PR Box

Convex polytopes

- The convex hull of a set of vectors (vertices) in $\mathbf{R}^{\wedge} \mathrm{d}$.

- Generalisation of polygons, polyhedra to higher d.
- May be defined in terms of its vertices or its facets (as a set of inequalities defining half planes.)

Geometric interpretation of Bls

- The "Bell polytope" represents the region of conditional probabilities allowed in LHV theories.
- It is a hyper-octahedron. The facets represent the CHSH inequalities (and normalisation conditions).

Marcel Froissart: Nouvo Cimento (I98|).

Many-party Bell inequalities

Many-party Bell-inequalities

- Werner and Wolf (200I) generalised the CHSH setting to n-parties.
- We still keep 2-settings, 2-outputs per meas and consider conditional probs for the XOR of all outputs.

Many-party Bell-inequalities

- Werner and Wolf (200I) generalised the CHSH setting to n-parties.
- We still keep 2-settings, 2-outputs per meas and consider conditional probs for the XOR of all outputs.

Many-party Bell-inequalities

- Werner and Wolf (200I) generalised the CHSH setting to n-parties.
- We still keep 2-settings, 2-outputs per meas and consider conditional probs for the XOR of all outputs.

- W \&W derived the full n-party Bell polytope - and found that, for any n, it is a hyper-octahedron in $2^{\wedge} n$ dimensions.

Loopholes in
 Bell inequality Experiments

Loopholes in Bell Inequality experiments

Loopholes in Bell Inequality experiments

- The beauty of Bell inequalities is that they are experimentally testable.

Loopholes in Bell Inequality experiments

- The beauty of Bell inequalities is that they are experimentally testable.
- However, Bell's assumptions are strict.
- Space-like separated measurements
- Perfect detection efficiency
- Measurement settings chosen at random (free-will).

Loopholes in Bell Inequality experiments

- The beauty of Bell inequalities is that they are experimentally testable.
- However, Bell's assumptions are strict.
- Space-like separated measurements
- Perfect detection efficiency
- Measurement settings chosen at random (free-will).
- If these do not hold, then the Bls may not hold
- there may be loopholes.

Loopholes in Bell Inequality experiments

 Loopholes make the LHV region larger.

Loopholes in Bell Inequality experiments

Loopholes make the LHV region larger.

Bell inequalities vs

Measurement-Based
 Quantum Computation

MBQC vs Bls

MBQC vs Bls

- Both
- Require (only) XOR side-processing to perform computational game or task.
- This task is impossible (non-linear) with XOR gates alone (linear gates).

MBQC vs Bls

MBQC vs Bls

- But
- MBQC requires adaptive measurements, and thus measurements cannot be space-like separated.
- Spatial separation is one of the most important assumptions in deriving the Bell inequalities.

This talk

- Main result:
- We will derive an equivalent of the Bell polytope for MBQC.
- I.e.Within LHV theories, which measurement-based computations can be achieved?
- Main tool:
- Polytopes over Boolean functions.

Boolean Functions

Boolean functions

- A Boolean function is a map from \mathbf{n}-bits to a single bit.
- Every such function can be represented by a 2^{n} bit vector listing the outputs for each of the 2^{n} inputs.
- E.g. $\vec{f}=\left[\begin{array}{c}f(0 \ldots 00) \\ f(0 \ldots 01) \\ f(0 \ldots 10) \\ \vdots \\ f(1 \ldots 11)\end{array}\right]$
- It is convenient to enumerate the Boolean functions as \quad where $\mathrm{j}=\mathrm{I}, \ldots, 2^{\wedge}\left(2^{\wedge} \mathrm{n}\right)$.

Boolean functions

- A Boolean function is a map from \mathbf{n}-bits to a single bit.
- Every such function can be represented by a 2^{n} bit vector listing the outputs for each of the 2^{n} inputs.
- E.g.
- l.e.There $2^{\wedge}\left(2^{\wedge} n\right)$

Boolean functions.

- It is convenient to enumerate the Boolean functions as \quad where $\mathrm{j}=\mathrm{I}, \ldots, 2^{\wedge}\left(2^{\wedge} \mathrm{n}\right)$.

Boolean functions

- A Boolean function is a map from \mathbf{n}-bits to a single bit.
- Every such function can be represented by a 2^{n} bit vector listing the outputs for each of the 2^{n} inputs.
- E.g.
- l.e.There $2^{\wedge}\left(2^{\wedge} n\right)$

Boolean functions.

- It is convenient to enumerate the Boolean functions as $f_{j}(\vec{s})$ where $\mathbf{j}=\mathbf{I}, \ldots, \mathbf{2}^{\wedge}\left(2^{\wedge} \mathrm{n}\right)$.

Boolean functions

- Every Boolean function may be expressed as a polynomial (modulo 2) (known as "algebraic normal form").
- E.g. if input is the bitstring $\vec{s}=s_{1} s_{2} \ldots s_{n}$

$$
f(s)=a_{0}+a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{12} s_{1} s_{2}+\cdots
$$

Boolean functions

- Every Boolean function may be expressed as a polynomial (modulo 2) (known as "algebraic normal form").
- E.g. if input is the bitstring $\vec{s}=s_{1} s_{2} \ldots s_{n}$

$$
f(s)=a_{0}+a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{12} s_{1} s_{2}+\cdots
$$

Boolean functions

- Every Boolean function may be expressed as a polynomial (modulo 2) (known as "algebraic normal form").
- E.g. if input is the bitstring $\vec{s}=s_{1} s_{2} \ldots s_{n}$

$$
f(s)=a_{0}+a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{12} s_{1} s_{2}+\cdots
$$

- In other words, any Boolean function can be expressed as a sequence of XOR (add mod 2) and AND (multiply) gates.

Boolean functions

- Every Boolean function may be expressed as a polynomial (modulo 2) (known as "algebraic normal form").
- E.g. if input is the bitstring $\vec{s}=s_{1} s_{2} \ldots s_{n}$

$$
f(s)=a_{0}+a_{1} s_{1}+a_{2} s_{2}+\cdots+a_{12} s_{1} s_{2}+\cdots
$$

- In other words, any Boolean function can be expressed as a sequence of XOR (add mod 2) and AND (multiply) gates.
- The degree of the polynomial is a useful way of classifying Boolean functions.

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

- There are thus $2^{\wedge}(\mathrm{n}+\mathrm{I})$ such functions, which we shall enumerate $l_{k}(\vec{s})$ where $\mathrm{k}=1, \ldots, 2^{\wedge}(\mathrm{n}+1)$.

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

- There are thus $2^{\wedge}(\mathrm{n}+\mathrm{I})$ such functions, which we shall enumerate $l_{k}(\vec{s})$ where $\mathrm{k}=1, \ldots, 2^{\wedge}(\mathrm{n}+1)$.
- All linear functions may be generated via XOR gates alone.

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

- There are thus $2^{\wedge}(\mathrm{n}+\mathrm{I})$ such functions, which we shall enumerate $l_{k}(\vec{s})$ where $\mathrm{k}=1, \ldots, 2^{\wedge}(\mathrm{n}+1)$.
- All linear functions may be generated via XOR gates alone.
- Linear functions are closed under composition.

Linear Boolean functions

- Linear Boolean functions are degree I polynomials, and can be most generally written

$$
l(s)=a_{0}+\sum_{j=1}^{n} a_{j} s_{j} \quad a_{k} \in\{0,1\}
$$

- There are thus $2^{\wedge}(\mathrm{n}+\mathrm{I})$ such functions, which we shall enumerate $l_{k}(\vec{s})$ where $\mathrm{k}=1, \ldots, 2^{\wedge}(\mathrm{n}+1)$.
- All linear functions may be generated via XOR gates alone.
- Linear functions are closed under composition.
- In contrast, by composing a quadratic gate (e.g. NAND) one can generate all Booleans.

Stochastic Boolean maps

- Consider a stochastic machine which, given input string s, outputs $f_{j}(\vec{s})$ with probability λ_{j}.

Stochastic Boolean maps

- Consider a stochastic machine which, given input string s, outputs $f_{j}(\vec{s})$ with probability λ_{j}.

- The probability that the output bit of the machine is \mathbf{I}, conditional upon the input s , is given by:

$$
p(1 \mid \vec{s})=\sum_{j} \lambda_{j} p\left(f_{j}(\vec{s})=1\right) \quad \sum_{j} \lambda_{j}=1
$$

Stochastic Boolean maps

Stochastic Boolean maps

- We can simplify this expression, due to a very convenient identity:

$$
p\left(f_{j}(\vec{s})=1\right)=f_{j}(\vec{s})
$$

Stochastic Boolean maps

- We can simplify this expression, due to a very convenient identity:

$$
p\left(f_{j}(\vec{s})=1\right)=f_{j}(\vec{s})
$$

- and thus obtain $p(1 \mid \vec{s})=\sum_{j} \lambda_{j} f_{j}(\vec{s})$

Stochastic Boolean maps

- We can simplify this expression, due to a very convenient identity:

$$
p\left(f_{j}(\vec{s})=1\right)=f_{j}(\vec{s})
$$

- and thus obtain $p(1 \mid \vec{s})=\sum_{j} \lambda_{j} f_{j}(\vec{s})$
- or equivalently $\vec{p}=\sum_{j} \lambda_{j} \vec{f}_{j}$

Stochastic Boolean maps

- We can simplify this expression, due to a very convenient identity:

$$
p\left(f_{j}(\vec{s})=1\right)=f_{j}(\vec{s})
$$

- and thus obtain $p(1 \mid \vec{s})=\sum_{j} \lambda_{j} f_{j}(\vec{s})$
- or equivalently

$$
\vec{p}=\sum_{j} \lambda_{j} \vec{f}_{j}
$$

- This is a convex combination of real-space vectors and thus a polytope, we call it the Boolean polytope.

Stochastic Boolean maps

- We can simplify this expression, due to a very convenient identity:

$$
p\left(f_{j}(\vec{s})=1\right)=f_{j}(\vec{s})
$$

- and thus obtain $p(1 \mid \vec{s})=\sum_{j} \lambda_{j} f_{j}(\vec{s})$
- or equivalently

$$
\vec{p}=\sum_{j} \lambda_{j} \vec{f}_{j}
$$

- This is a convex combination of real-space vectors and thus a polytope, we call it the Boolean polytope.
- Geometrically, it is a unit $2^{\wedge} n d$. hypercube.

The Linear Polytope

The Linear Polytope

- Consider now a stochastic machine which can only implement linear functions:

The Linear Polytope

- Consider now a stochastic machine which can only implement linear functions:

- The output probability of a linear stochastic machine lies in the $\mathbf{2}^{\wedge}(\mathrm{n}+\mathrm{I})$ vertex polytope:

$$
\vec{p}=\sum_{j=1}^{2^{n+1}} \lambda_{j} \overrightarrow{l_{j}}
$$

The Linear Polytope

- Consider now a stochastic machine which can only implement linear functions:

- The output probability of a linear stochastic machine lies in the $\mathbf{2}^{\wedge}(\mathrm{n}+\mathrm{I})$ vertex polytope:

$$
\vec{p}=\sum_{j=1}^{2^{n+1}} \lambda_{j} \overrightarrow{l_{j}}
$$

- We shall call this the (n-bit) linear polytope.

The linear polytope

- We can classify the linear polytope using standard techniques.
- It has $\mathbf{2}^{\wedge}(\mathbf{n + I})$ vertices in a $\mathbf{2}^{\wedge} \mathbf{n}$ dimensional space.
- Can show that it is a hyper-octahedron.

Bell inequalities for MBQC

Bell inequalities for MBQC

- Let us ask a "Bell inequality" type question for MBQC:
- Using the correlations from a LHV theory, within an MBQC setting what computations can we achieve?

Bell inequalities for MBQC

Bell inequalities for MBQC

- If we allow side computation to be universal, we could access the full Boolean polytope with side computation alone.

Bell inequalities for MBQC

- If we allow side computation to be universal, we could access the full Boolean polytope with side computation alone.
- For our question to make sense we make the following key assumption:

Bell inequalities for MBQC

- If we allow side computation to be universal, we could access the full Boolean polytope with side computation alone.
- For our question to make sense we make the following key assumption:
- Side-computation will be solely linear.

Bell inequalities for MBQC

- To simplify further, let's initially adopt the precise CHSH (Werner-Wolf) setup.
- Spatially separated parties with independent inputs.
- Output of computation encoded in the XOR of all outcome bits.

$$
M=\sum_{j} m_{j}
$$

Bell inequalities for MBQC

- What computations $M(\vec{s})$ can this setup perform?
- LHV model may be stochastic and thus the computations may include stochastic maps allowed computations will form a region of the Boolean polytope.

Bell inequalities for MBQC

- What computations $M(\vec{s})$ can this setup perform?
- LHV model may be stochastic and thus the computations may include stochastic maps allowed computations will form a region of the Boolean polytope.

Bell inequalities for MBQC

- What computations $M(\vec{s})$ can this setup perform?
- LHV model may be stochastic and thus the computations may include stochastic maps allowed computations will form a region of the Boolean polytope.

- Randomness arises in LHV theories by random assignment of the hidden variables.

Bell inequalities for MBQC

- What computations $M(\vec{s})$ can this setup perform?
- LHV model may be stochastic and thus the computations may include stochastic maps allowed computations will form a region of the Boolean polytope.

- Randomness arises in LHV theories by random assignment of the hidden variables.
- Hence, this region will be a convex polytope, whose vertices correspond to the deterministic computations.

Bell inequalities for MBQC

- First let us consider a single box.

- The most general deterministic relationships between output and input can be written:

$$
m_{j}=a_{j}+b_{j} m_{j} \quad a_{j} \in\{0,1\} \quad b_{j} \in\{0,1\}
$$

- l.e. there are only 4 I-bit to I-bit functions.

Bell inequalities for MBQC

- If we associates bit \mathbf{a}_{j} and $\mathbf{b}_{\boldsymbol{j}}$ with each box, the most general expression for the output $\times O$ R bit $M(\vec{s})$ is

$$
\begin{aligned}
& M=\sum_{j} m_{j}=\sum_{j} a_{j}+\sum_{j} b_{j} s_{j} \\
& M=a+\sum_{j} b_{j} s_{j}
\end{aligned}
$$

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

- We see

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

- We see
- this is linear in s ,

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

- We see
- this is linear in s ,
- by suitable choice of a_{j} and b_{j} all $2^{\wedge}(n+1)$ linear functions can be achieved.

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

- We see
- this is linear in s ,
- by suitable choice of a_{j} and b_{j} all $2^{\wedge}(n+1)$ linear functions can be achieved.
- Hence the full range of computations achievable by LHV correlations with XOR on the outcomes

Bell inequalities for MBQC

$$
M(\vec{s})=a+\sum_{j} b_{j} s_{j}
$$

- We see
- this is linear in s,
- by suitable choice of a_{j} and b_{j} all $2^{\wedge}(n+1)$ linear functions can be achieved.
- Hence the full range of computations achievable by LHV correlations with XOR on the outcomes
- is the Linear Polytope.

The linear polytope vs the Werner Wolf polytope

The linear polytope vs the Werner Wolf polytope

- The linear polytope is a hyper-octahedron with $2^{\wedge}(n+1)$ vertices.
- The Werner-Wolf polytope is a hyper-octahedron with $2^{\wedge}(\mathrm{n}+\mathrm{I})$ vertices.

- Are they the same polytope?

The linear polytope vs the Werner Wolf polytope

- The linear polytope is a hyper-octahedron with $2^{\wedge}(n+1)$ vertices.
- The Werner-Wolf polytope is a hyper-octahedron with $2^{\wedge}(n+1)$ vertices.

- Are they the same polytope?
- Yes! In fact, the derivation above is essentially a line-by-line recasting of Werner and Wolf (200I).

The linear polytope vs the Werner Wolf polytope

- The linear polytope is a hyper-octahedron with $2^{\wedge}(n+1)$ vertices.
- The Werner-Wolf polytope is a hyper-octahedron with $2^{\wedge}(n+1)$ vertices.

- Are they the same polytope?
- Yes! In fact, the derivation above is essentially a line-by-line recasting of Werner and Wolf (200I).
- Our derivation is a computational reformulation of the traditional Bell inequalities.

Bell inequalities for MBQC

- So is this a failure?

Bell inequalities for MBQC

- So is this a failure?
- We have reproduced a I0-year old result.

Bell inequalities for MBQC

- So is this a failure?
- We have reproduced a 10-year old result.
- We have failed to derive Bell inequalities relevant to standard MBQC since that utilises adaptive measurements.

Bell inequalities for MBQC

- So is this a failure?
- We have reproduced a 10-year old result.
- We have failed to derive Bell inequalities relevant to standard MBQC since that utilises adaptive measurements.
- However, sometimes new representations give new insights....

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.
- Recall that a "loophole" is any experimental imperfection which enlarges the LHV region.

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.
- Recall that a "loophole" is any experimental imperfection which enlarges the LHV region.
- Since the LHV region is the linear polytope, and since linear functions are closed under composition.

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.
- Recall that a "loophole" is any experimental imperfection which enlarges the LHV region.
- Since the LHV region is the linear polytope, and since linear functions are closed under composition.
- Introducing extra linear computation will never introduce a loophole!

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.
- Recall that a "loophole" is any experimental imperfection which enlarges the LHV region.
- Since the LHV region is the linear polytope, and since linear functions are closed under composition.
- Introducing extra linear computation will never introduce a loophole!
- All known loopholes must be associated with some non-linear computation.

Loopholes and linearity

- Our Bell polytope is the polytope of linear functions.
- Recall that a "loophole" is any experimental imperfection which enlarges the LHV region.
- Since the LHV region is the linear polytope, and since linear functions are closed under composition.
- Introducing extra linear computation will never introduce a loophole!
- All known loopholes must be associated with some non-linear computation.
- This allows us to weaken our assumptions and derive the same Bell inequalities.

An example: pre-processing in GHZ

- Notice the third input depends upon the other two!

An example: pre-processing in GHZ

- Notice the third input depends upon the other two!

- Why does this not induce a loophole?

An example: pre-processing in GHZ

- Notice the third input depends upon the other two!

$$
m_{1} \oplus m_{2} \oplus m_{3}=s_{1} s_{2}
$$

- Why does this not induce a loophole?
- In an experiment, we simulate the dependency using post-selection.

An example: GHZ

- In an experimental test of GHZ, the third input is set at random.

- We then post-select our data, and only keep data where $r=s_{1}+s_{2}$.

An example: GHZ

- In an experimental test of GHZ, the third input is set at random.

- We then post-select our data, and only keep data where $r=s_{1}+s_{2}$.
- Does this induce a detection loop-hole? No, it doesn't...

Linear measurement post-selection

- Consider a more general setting. Let us set all inputs to n measurements as n uniformly random bits.

$$
M=a+\sum_{j} b_{j} r_{j} \quad \square_{\downarrow}^{\downarrow}
$$

- Let s be the input bit-string (provided by a referee, say).
- We can post-select data such that each $\mathbf{r}_{\mathbf{j}}$ is a linear function of the bits in \mathbf{s}.

Linear measurement post-selection

- Observation: This post-selection does not induce a loophole.
- Reason: closure of linear maps under composition.

Linear measurement post-selection

- Observation: This post-selection does not induce a loophole.
- Reason: closure of linear maps under composition.

$$
M=a+\sum_{j} b_{j} r_{j}
$$

Linear measurement post-selection

- Observation: This post-selection does not induce a loophole.
- Reason: closure of linear maps under composition.

$$
M=a+\sum_{j} b_{j} r_{j}
$$

- \boldsymbol{M} is linear in $\mathbf{r}_{\mathbf{j}}$. The $\mathbf{r}_{\mathbf{j}}$'s are linear in s . Hence M is linear in s .

Linear measurement post-selection

- Observation: This post-selection does not induce a loophole.
- Reason: closure of linear maps under composition.

$$
M=a+\sum_{j} b_{j} r_{j}
$$

- \mathbf{M} is linear in \boldsymbol{r}_{j}. The \boldsymbol{r}_{j} 's are linear in s. Hence M is linear in s.
- M remains inside the linear polytope and no loopholes are induced - the LHV region is no larger than before.

Linear measurement post-selection

- But we can go further.

Linear measurement post-selection

- But we can go further.
- By the same reasoning, we can post-select \mathbf{r} to be a linear function in both s and the measurement output bits m_{j}.

Linear measurement post-selection

- But we can go further.
- By the same reasoning, we can post-select \mathbf{r} to be a linear function in both s and the measurement output bits m.

Linear measurement post-selection

- But we can go further.
- By the same reasoning, we can post-select r to be a linear function in both s and the measurement output bits m.
- Since m_{j} are linear in \mathbf{r}, \mathbf{M} will remain within the linear polytope!

Linear measurement post-selection

- But we can go further.
- By the same reasoning, we can post-select \mathbf{r} to be a linear function in both s and the measurement output bits m.
- Since m_{j} are linear in \mathbf{r}, \mathbf{M} will remain within the linear polytope!
- This allows us to simulate linearly adaptive measurements,

Linear measurement post-selection

- But we can go further.
- By the same reasoning, we can post-select r to be a linear function in both s and the measurement output bits m_{j}.
- Since m_{j} are linear in r, M will remain within the linear polytope!
- This allows us to simulate linearly adaptive measurements,

- And the linear polytope will still describe all LHV correlations.

Computational Bell inequalities

Computational Bell Inequalities

- We can use these observations to generalise the traditional Bell inequalities.

Computational Bell Inequalities

- We can use these observations to generalise the traditional Bell inequalities.
- A computational Bell inequality is a facet of the polytope of Boolean stochastic maps achieved in any LHV theory
- On a random m-bit input string s
- Given n 2-setting, 2-outcome space-like separated measurements
- With post-selection of measurement settings which are a linear function of input data and other measurement outcomes (simulated linear adaptivity)
- And arbitrary linear pre- and post-computation.

Computational Bell Inequalities

- The "Computational Bell inequalities" are easy to characterise.
- For $\mathrm{n} \geq \mathrm{m}$ they are facets of the m -bit linear polytope.

- Setting $\mathrm{n}=\mathrm{m}$ and forbidding post-selection, we recover the traditional definition of CHSH inequalities.

From LHV to Quantum Correlations

- A significant strand of Bell inequality research has been to characterise the set of conditional probabilities / stochastic maps allowed within Quantum Mechanics.

[I] Known as Tsirelson - Landau - Masanes region.

From LHV to Quantum Correlations

- A significant strand of Bell inequality research has been to characterise the set of conditional probabilities / stochastic maps allowed within Quantum Mechanics.
- Usually only nonadaptive measurements are considered.

[I] Known as Tsirelson - Landau - Masanes region.

From LHV to Quantum Correlations

- A significant strand of Bell inequality research has been to characterise the set of conditional probabilities / stochastic maps allowed within Quantum Mechanics.
- Usually only nonadaptive measurements are considered.
- But in our new framework, we can also allow extra parties, and simulated linear adaptive measurement.

[I] Known as Tsirelson - Landau - Masanes region.

From LHV to Quantum Correlations

- A significant strand of Bell inequality research has been to characterise the set of conditional probabilities / stochastic maps allowed within Quantum Mechanics.
- Usually only nonadaptive measurements are considered.
- But in our new framework, we can also allow extra parties, and simulated linear adaptive measurement.
- Do these enlarge the quantum region?

A bigger quantum set?
[I] Known as Tsirelson - Landau - Masanes region.

From LHV to Quantum Correlations

- Yes!
- For a fixed n ,
- Allowing extra parties
- Allowing linear post-selection (simulated adaptivity).
- can increase the quantum region.

From LHV to Quantum Correlations

- Yes!
- For a fixed \mathbf{n},
- Allowing extra parties
- Allowing linear post-selection (simulated adaptivity).
- can increase the quantum region.
- This can provide a greater
 degree of violation of Bell Inequalities than in the standard setting.

Quantum correlations with adaptive measurements

- For example, if we limit the number of parties to 6.
- With linear adaptive measurement we can access the deterministic 3-bit AND function.
- The triple product $\mathbf{s}_{1} \mathbf{s}_{2} \mathbf{s}_{3}$ of input bits $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}$.

- With no adaptivity, deterministic computation of this function is impossible with only 6 measurements [I].
[I] In Hoban et al (20I0-arxiv next week) we show that $2^{\wedge}(\mathrm{n}-\mathrm{I})$ qubits are required to acheive an n-bit AND deterministically with no adaptivity.

Summary

- We derived Bell inequalities from the perspective of measurement-based quantum computation.

Summary

- We derived Bell inequalities from the perspective of measurement-based quantum computation.
- This allowed us to characterise all 2-setting, 2-output Bell inequalities in terms of the linear Boolean polytope.

Summary

- We derived Bell inequalities from the perspective of measurement-based quantum computation.
- This allowed us to characterise all 2-setting, 2-output Bell inequalities in terms of the linear Boolean polytope.
- And made it clear that extra linear computations (including simulated adaptivity) do not lead to loopholes.

Summary

- We derived Bell inequalities from the perspective of measurement-based quantum computation.
- This allowed us to characterise all 2 -setting, 2 -output Bell inequalities in terms of the linear Boolean polytope.
- And made it clear that extra linear computations (including simulated adaptivity) do not lead to loopholes.
- This enables one to consider a richer structure of quantum correlations in the context of Bls (including the adaptive measurements arising in MBQC) which we are only starting to investigate.

Summary

- We derived Bell inequalities from the perspective of measurement-based quantum computation.
- This allowed us to characterise all 2 -setting, 2-output Bell inequalities in terms of the linear Boolean polytope.
- And made it clear that extra linear computations (including simulated adaptivity) do not lead to loopholes.
- This enables one to consider a richer structure of quantum correlations in the context of Bls (including the adaptive measurements arising in MBQC) which we are only starting to investigate.
- Are Bell inequality violations more about non-linearity than non-locality...?

Acknowledgements

- Joint work with members of my UCL group
- Matty Hoban, Janet Anders, Earl Campbell and Klearchos Loukopoulos.
- These ideas benefitted from discussions with Robert Raussendorf, Robert Spekkens, Miguel Navascues, Akimasa Miyake, Robin Blume-Kohout Debbie Leung and many others...
- References
- R.Werner and M.Wolf, Phys. Rev. A 64 32II2 (200I)
- J.Anders and D. E. Browne, Phys. Rev. Lett. (2009)
- M. J. Hoban, E.T. Campbell, K. Loukopoulos, D.E. Browne, "Non-adaptive measurement-based quantum computation and multi-party Bell inequalities", arxiv very very soon.
- M.J. Hoban and D. E. Browne, Bell inequalities and adaptive measurements, arxiv soon.

